D-Link DWL-8600AP Marine Radio User Manual


 
Unied Access Point Administrator’s Guide
Unied Access Point Administrator’s Guide
Page 41
March 2012
Section 4 - Managing the Access Point
Field Description
Mode The Mode denes the Physical Layer (PHY) standard the radio uses.
Note: The modes available depend on the country code setting and the radio selected.
Select one of the following modes for radio 1:
•) IEEE 802.11a is a PHY standard that species operating in the 5 GHz U-NII band
using orthogonal frequency division multiplexing (OFDM). It supports data rates
ranging from 6 to 54 Mbps.
•) IEEE 802.11a/n operates in the 5 GHz ISM band and includes support for both
802.11a and 802.11n devices. IEEE 802.11n is an extension of the 802.11 standard
that includes multiple-input multiple-output (MIMO) technology. IEEE 802.11n
supports data ranges of up to 248 Mbps and nearly twice the indoor range of 802.11
b, 802.11g, and 802.11a.
•) 5 GHz IEEE 802.11n is the recommended mode for networks with 802.11n devices
that operate in the 5 GHz frequency that do not need to support 802.11a devices.
IEEE 802.11n can achieve a higher throughput when it does not need to be
compatible with legacy devices (802.11a).
Select one of the following modes for radio 2:
•) IEEE 802.11b/g operates in the 2.4 GHz ISM band. IEEE 802.11b is an enhancement
of the initial 802.11 PHY to include 5.5 Mbps and 11 Mbps data rates. It uses direct
sequence spread spectrum (DSSS) or frequency hopping spread spectrum (FHSS)
as well as complementary code keying (CCK) to provide the higher data rates. It
supports data rates ranging from 1 to 11 Mbps. IEEE 802.11g is a higher speed
extension (up to 54 Mbps) to the 802.11b PHY. It uses orthogonal frequency division
multiplexing (OFDM). It supports data rates ranging from 1 to 54 Mbps.
•) IEEE 802.11b/g/n operates in the 2.4 GHz ISM band and includes support for 802.11b,
802.11g, and 802.11n devices.
•) 2.4 GHz IEEE 802.11n is the recommended mode for networks with 802.11n devices
that operate in the 2.4 GHz frequency that do not need to support 802.11b/g
devices. IEEE 802.11n can achieve a higher throughput when it does not need to be
compatible with legacy devices (802.11b/g).
Channel Select the Channel.
The range of available channels is determined by the mode of the radio interface and the
country code setting. If you select Auto for the channel setting, the AP scans available
channels and selects a channel where no trafc is detected.
The channel denes the portion of the radio spectrum the radio uses for transmitting and
receiving. Each mode offers a number of channels, depending on how the spectrum is
licensed by national and transnational authorities such as the Federal Communications
Commission (FCC) or the International Telecommunication Union (ITU-R).
When automatic channel assignment is enabled on the Channel Management page for
Clustering, the channel policy for the radio is automatically set to static mode, and the Auto
option is not available for the Channel eld. This allows the automatic channel feature to set
the channels for the radios in the cluster.
Channel Bandwidth
(802.11n modes
only)
The 802.11n specication allows a 40 MHz wide channel in addition to the legacy 20 MHz
channel available with other modes. The 40 MHz channel enables higher data rates but
leaves fewer channels available for use by other 2.4 GHz and 5 GHz devices.
Set the eld to 20 MHz to restrict the use of the channel bandwidth to a 20 MHz channel.
Primary Channel
(802.11n modes
only)
This setting can be changed only when the channel bandwidth is set to 40 MHz. A 40 MHz
channel can be considered to consist of two 20 MHz channels that are contiguous in the
frequency domain. These two 20 MHz channels are often referred to as the Primary and
Secondary channels. The Primary Channel is used for 802.11n clients that support only a
20 MHz channel bandwidth and for legacy clients.
Select one of the following options:
•) Lower — Set the Primary Channel as the lower 20 MHz channel in the 40 MHz band.
•) Upper — Set the Primary Channel as the upper 20 MHz channel in the 40 MHz band.